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a b s t r a c t

In this study, we introduce a new approach for predicting and analyzing the input multiplicity in reactive flash

separation processes. Specifically, we have identified necessary conditions to detect these multiple states in reactive

flash separations using reaction-invariant composition variables. The presence of the input multiplicity is studied for

the reactive systems of MTBE and TAME production to illustrate the capabilities of our methodology. For these reactive

systems, we report the existence of multiple states for different operating conditions. In summary, our strategy can

be applied with any reactive system and thermodynamic model, assuming that all reactions are reversible and

in thermodynamic equilibrium and the operating conditions are away from the retrograde region. In general, our

method is a robust procedure for the multiplicity analysis in flash separation of multi-reactive and multi-component
systems.

© 2012 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Keywords: Reactive flash separation; Input multiplicity; Reaction-invariant composition variables

occurs when one set of input variables results in two or more
1. Introduction

Reactive separation schemes (e.g., reactive distillation, extrac-
tion and crystallization) are integrated unit operations widely
used in the current chemical industry due to their well-known
economical and operational advantages. Specifically, these
separation systems may improve the process performance via
the reduction of capital cost, the increment of selectivity and
conversion, the decrement of heat demand, the suppression
of side reactions and the avoidance of undesirable phase equi-
librium conditions such as homogeneous azeotropy (Taylor
and Krishna, 2000). However, the reliable modeling of reac-
tive separation process is difficult due to the multicomponent
nature of the reactive systems, the nonlinearity of the thermo-
dynamic models caused by the interaction of simultaneous
chemical and physical equilibrium, and also by the type of
variables involved in defining the mathematical model, which
are generally composition variables in molar units and extents

of reaction. In particular, reactive separation processes exhibit
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a high non-linear behavior and, as a consequence, the mul-
tiplicity of solutions is often possible during the design and
modeling of these separation schemes (Taylor and Krishna,
2000; Chen et al., 2002).

Multiplicity of solutions is an important feature of indus-
trial processes and plays an important role in design,
simulation and control of separation units (Monroy-Loperena,
2001). In process system engineering, it is important to predict
all multiple states within the practical domain of operating
variables, to know whether they are desirable, and to under-
stand how the separation scheme responses to changes in the
operating conditions (Tiscareño et al., 1998; Yang et al., 2006).
According to the literature, reactive separation systems can
exhibit two types of multiplicity: input and output multiplic-
ity (Singh et al., 2005a; Malinen and Tanskanen, 2010). Input
multiplicity occurs when two or more sets of input variables
produce the same output conditions, while output multiplicity
; Accepted 29 February 2012

independent sets of output variables (Singh et al., 2005a,b;
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Nomenclature

F feed
V vapor phase
L liquid phase
c number of components
r number of independent chemical reactions
ai activity of component i
Keq reaction equilibrium constant
ni mole number of component i
N invertible matrix of stoichiometric coefficients

of reference components
P pressure
T temperature
vi stoichiometric coefficient of component i
x mole fraction
X transformed mole fraction
z feed mole fraction
Z transformed feed mole fraction
� i activity coefficient of component i in the mix-

ture
Ki phase equilibrium constant of component i
�̂V transformed amount fraction for vapor phase
�V mole fraction of vapor phase
Tbub bubble-point temperature
Tdew dew-point temperature
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Fig. 1 – Types of multiplicity in reactive separation systems:
(a) input multiplicity and (b) output multiplicity.
umar and Kaistha, 2008; Malinen and Tanskanen, 2010);
ig. 1 illustrates these types of multiplicity. It is convenient
o remark that the input variables of separation processes are
hose that can be manipulated by controllers. These variables
nclude the reflux ratio, reboiler duty, and feed flow, among
thers. On the other hand, the output variables can be also
ontrolled or used to describe the process conditions, e.g., the
tage temperatures and compositions (Singh et al., 2005b). In
articular, the input multiplicity (IM) is relevant and important
ecause of it imposes significant control and operation prob-

ems than those obtained for output multiplicity (Vaca et al.,
006; Kumar and Kaistha, 2008).

Theoretical and experimental studies have shown the
xistence of multiple states in reactive separation processes
specially for reactive distillation columns (Hauan et al., 1997;
ldarsi and Douglas, 1998; Güttinger and Morari, 1999a,b;
aylor and Krishna, 2000; Chen et al., 2002; Baur et al., 2003;
ingh et al., 2005a,b; Yang et al., 2006; Kumar and Kaistha,
008; Svandová et al., 2009; Ramzan et al., 2010). Several
uthors have studied and analyzed the presence of multi-
licity in reactive distillation columns using several operative
ariables and design parameters such as the system configura-
ion, the selection of both thermodynamic and kinetic models,
he reflux ratio, and the location of feed inlets, among oth-
rs (Taylor and Krishna, 2000). Literature indicates that the
xistence and possible explanation of multiplicity in reactive
istillation columns have been investigated by several authors
or well-known reactive systems involved in the production of
uel ethers like MTBE and TAME (Mohl et al., 1999). Different
umerical methods have been used to detect and predict the
resence of multiple states in these separation systems where
omotopy continuation approaches have been widely applied

or predicting and analyzing the multiplicity via bifurcation

iagrams (Güttinger and Morari, 1999a,b; Taylor and Krishna,
000; Rodríguez et al., 2001, 2004; Chen et al., 2002; Malinen
and Tanskanen, 2010). However, to the best of our knowledge,
only few studies have been conducted on multiplicity in reac-
tive flash separations (Rodríguez et al., 2001, 2004; Lakerveld
et al., 2005; Ruiz et al., 2006). Note that the flash separation
problem is one of the most important chemical engineer-
ing problems and is recurrent in the modeling and design
of separation systems based on vapor–liquid phase equilib-
rium. Despite significant progress on design and modeling
of reactive distillation columns have been achieved, more
general results are needed concerning the presence of mul-
tiplicity in reactive flash operation. It is convenient to remark
that the reliable determination and analysis of the existence
of multiple states in reactive separation schemes is a chal-
lenging task and it is more complex than those involved for
conventional non-reactive separation schemes because of the
presence of chemical reactions increases the complexity and
dimensionality of flash problems. Therefore, proper and reli-
able numerical strategies are required for modeling reactive
systems and predicting the presence of multiple solutions in
reactive separation processes.

Therefore, in this study we introduce a new approach to
predict the existence of input multiplicity in reactive flash
separations. This approach is based on the application of
reaction-invariant composition variables of Ung and Doherty
(1995a,b). Note that these variables allow that the classical
procedures for analyzing and modeling non-reactive mix-
tures can be extended to systems with chemical reactions.

The presence of the input multiplicity is studied for the



1858 chemical engineering research and design 9 0 ( 2 0 1 2 ) 1856–1870
Fig. 2 – Schematic diagram of a reactive flash separation.

reactive systems of MTBE and TAME production to illustrate
the capabilities of our methodology. For these reactive sys-
tems, we report the existence of multiple states for different
operating conditions using our approach. Finally, we show that
necessary K-based conditions for the existence of multiple
solutions in non-reactive flash operation, previously reported
by Tiscareño et al. (1998) and Monroy-Loperena (2001), can be
useful for multiplicity analysis of reactive flash separation in
tested reactive systems.

2. Problem formulation of input
multiplicity in reactive flash separation

2.1. Model description

In general, a flash problem consists of finding the correct num-
ber and types of phases and their corresponding equilibrium
compositions such that the Gibbs free energy of the system is
at the global minimum. The chemical equilibrium constraints
must be considered to determine the phase distribution and
compositions of reactive systems. In this study, we will ana-
lyze the case of two-phase flash separation with a reactive
vapor–liquid equilibrium.

Given a temperature T and pressure P, consider a reac-
tive flash separation process for a system of c components
with an initial composition n0 = (n1,0,. . .,nc,0) that undergoes r
independent chemical reactions (see Fig. 2). Using this formu-
lation for the PT flash problem, we can discard the energy
balance from the analysis and this thermodynamic prob-
lem is posed as a Gibbs free energy minimization problem.
Under these conditions, the problem for modeling the reactive
vapor–liquid equilibrium is to solve the system of non-linear
equations obtained from the stationary conditions of the
Gibbs free energy minimization problem, which involves the
material balance, phase and chemical equilibrium, and con-
sistency equations. Usually, this problem is formulated using
conventional composition variables (i.e., mole numbers) as
independent variables and unknowns (Lakerveld et al., 2005;
Ruiz et al., 2006). However, as indicated by Ung and Doherty
(1995a,b), the numbers of moles are not proper variables to
use in the modeling of reactive systems because they do not
have the same dimensionality as the number of degrees of
freedom (i.e., they are inconsistent with respect to the Gibbs
phase rule).

To obtain a convenient description of reactive vapor–liquid
equilibrium problem and to simplify the analysis of mul-

tiplicity in flash systems subject to chemical reactions, we
have applied the reaction-invariant composition variables
proposed by Ung and Doherty (1995a,b). These variables
are based on transformation of the physical compositions
and its principal benefit is that the chemical and physi-
cal equilibrium approach in the reactive mixture is identical
to a strictly physical equilibrium model. The dimension of
reaction-invariant composition space is equal to the num-
ber of degrees of freedom obtained from the Gibbs phase
rule. Thus, these variables depend only on the initial com-
position of each independent chemical species, restrict the
solution space to the compositions that satisfy stoichiometry
requirements and also reduce the dimension of the compo-
sition space by the number of independent reactions (Ung
and Doherty, 1995a,b). These features allow all of the pro-
cedures used to model non-reactive mixtures to be easily
extended to systems subject to chemical equilibrium and, con-
sequently, non-reactive algorithms can be modified to account
for chemical reactions. Note that several approaches for mod-
eling and designing reactive separation processes have been
developed using these reaction-invariant composition vari-
ables and they include phase equilibrium calculations, phase
stability analysis, azeotropy prediction, calculation of residues
curves, among other calculations (e.g., Güttinger and Morari,
1999a,b; Bonilla-Petriciolet et al., 2006a,b, 2008a,b; Carrera-
Rodriguez et al., 2011a,b).

For a reactive system of c components and r chemical reac-
tions, transformed mole variables X are defined as

Xi = xi − viN
−1xref

1 − vTOTN−1xref
i = 1, . . . , c − r (1)

where xi is the mole fraction of component i, xref is a column
vector of mole fractions for r reference components, vi is the
row vector of stoichiometric coefficients of component i for
each of the r reactions, N is an invertible and square matrix
formed from the stoichiometric coefficients of the reference
components in the r reactions, and vTOT is a row vector where
each element corresponds to the sum of stoichiometric coef-
ficients for all components that participate in each of the r
reactions, respectively. These transformed mole fractions (X)
in reactive systems are similar to the mole fractions (x) in
non-reactive mixtures, and the sum of all transformed mole
fractions is equal to unity (i.e.,

∑c−r

i=1Xi = 1), but a transformed
mole fraction can be negative or positive depending on the
reference components, number and type of reactions. There-
fore, for a reactive mixture, minimizing Gibbs free energy
with respect to conventional compositions variables (i.e., mole
numbers or fractions) is equivalent to minimizing the Gibbs
free energy formulated with respect to the reaction-invariant
composition variables (Ung and Doherty, 1995a,b). It is impor-
tant to remark that X has the desirable property of taking the
same numerical values before and after the reactions. This
is in contrast to conventional mole variables (x and n), which
have different values for the components in the unmixed and
mixed (i.e., reacting) states (Ung and Doherty, 1995a,b).

Note that the transformed variables X are related to x via
the reaction equilibrium constants Keq,k:

Keq,k =
c∏

i=1

avik
i k = 1, . . . , r (2)

where vik is the stoichiometric coefficient of component i

in reaction k, and ai is the activity of component i. To
evaluate thermodynamic properties in reactive systems using
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his approach, mole fractions are obtained from the trans-
ormation procedure X → x using Eqs. (1) and (2). This stage
equires solution of one or more nonlinear equations depend-
ng on the number of chemical reactions. In particular, any
olver such as the bisection method (for systems with only one
eaction) or the Newton method (for multi-reaction systems)
an be used for this variable transformation. The resulting
ole fraction values (x) satisfy the stoichiometry require-
ents and are chemically equilibrated. It is important to

emark that multiple solutions are not possible for xref dur-
ng variable transformation X → x because only one solution
et of x simultaneously satisfies the chemical equilibrium

equations and corresponds to the specified values of the
transformed composition variables (Ung and Doherty, 1995a).

herefore, the presence of multiple states in the modeling of
eactive flash separation is not caused by the use of these
ariables.

The reactive vapor–liquid equilibrium problem for a mul-
icomponent and multireactive system can be defined as
Bonilla-Petriciolet et al., 2006a,2008a):

L
i = (Zi − ıi�̂

V )

(�̂V (Ki� − 1) + 1)
i = 1, . . . , c − r (3)

V
i = XL

i Ki� + ıi = (ZiKi� + ıi(1 − �̂V ))

(�̂V (Ki� − 1) + 1)
i = 1, . . . , c − r (4)

here

� =
(1 − vTOTN−1xL

ref
)

(1 − vTOTN−1xV
ref

)

ıi =
(viN

−1(Kix
L
ref

− xV
ref

))

(1 − vTOTN−1xV
ref

)

(5)

ubject to the material balance given also in transformed com-
osition space

i − (1 − �̂V )XL
i − XV

i �̂V = 0 i = 1, . . . , c − r (6)

ˆ V =
�V (1 − vTOTN−1xV

ref
)

(1 − vTOTN−1zref )
(7)

nd equality constraints

c−r∑
i=1

XL
i = 1

c−r∑
i=1

XV
i = 1

�̂V + �̂L = 1

(8)

here XL
i

and XV
i

are the transformed mole fraction of com-
onent i at liquid and vapor phase at equilibrium, Zi is the
lobal transformed composition of component i in the feed,

i is the phase equilibrium constant of component i, �̂V is
he transformed amount fraction for vapor phase while �V is
he conventional mole fraction of vapor phase whose feasible
omain is (0, 1). Note that the feasible domain of �̂V is not the
ame as that given for �V due to stoichiometric constraints
f the reactive system, see Eq. (7). However, this fact is not

limitation to robustly solve the reactive phase equilibrium

roblem.
The implicit function to evaluate the transformed amount
fraction for vapor phase is based on an alternative
Rachford–Rice formulation using X (Bonilla-Petriciolet et al.,
2006a,2008a). Thus, for the reactive flash problem we have to
solve the following non-linear equation

f (�̂V ) =
c−r∑
i=1

[
(Zi(Ki� − 1) + ıi)

(�̂V (Ki� − 1) + 1)

]
= 0 (9)

Eq. (9) is employed to evaluate �̂V (i.e., �V) and determine
the vapor–liquid equilibrium compositions subject to chem-
ical equilibrium. Herein, we restrict our analysis of reactive
flash equations on the appearance of multiple solutions in
the region of physical significance for flash separations, i.e.
phase equilibrium calculations are bounded between reactive
bubble and dew point conditions where �V ∈ (0, 1). Therefore,
bubble and dew point calculations are performed using the
next functions (Bonilla-Petriciolet et al., 2006a,2008a):

fbubble = 1 −
c−r∑
i=1

(Ki� Zi + ıi) = 0 (10)

fdew = 1 −
c−r∑
i=1

[
Zi − ıi

Ki�

]
= 0 (11)

Note that the phase equilibrium constant Ki are calculated
from

Ki{XL, XV} = ϕ̂L
i

ϕ̂V
i

= �L
i

�V
i

i = 1, . . . , c − r (12)

where ϕ̂i is the fugacity coefficient of component i in the
mixture and � i is the activity coefficient of component i,
respectively. These thermodynamic properties are determined
using a proper model (e.g., equation of state or local composi-
tion model) and employing the results of the transformation
procedure X → x (i.e., we use mole fractions that satisfy the
chemical equilibrium to evaluate the system thermodynamic
properties). Note that the general steps involved in the vari-
able transformation between X and x are independent of both
the type of reactive system and the model used in the calcu-
lation of thermodynamic properties for the different phases
(e.g., equations of state or local composition models). In par-
ticular, the thermodynamic model only affects the approach
used for calculating the fugacity or activity coefficients, which
are involved in the evaluation of Eqs. (2) and (12); while
the characteristics of the reactive system (i.e., the number
of components and reactions) determine the dimensionality
of the non-linear equation system to be solved during the
transformation of composition variables. Therefore, in this
study no restrictions are made with regard to these param-
eters. On the other hand, different numerical strategies can
be used for performing flash calculations in reactive sys-
tems with reaction-invariant composition variables and they
include, for example, simultaneous equation-solving meth-
ods, equation decoupling approaches and global optimization
techniques (Bonilla-Petriciolet et al., 2006a,b, 2008a,b). In
this study, proper numerical methods have been applied
for reliably modeling the phase behavior of reactive sys-
tems used as cases of study and these calculations do

not require a significant numerical effort and computer
time.
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2.2. Input multiplicity analysis

Using transformed variables, the reactive flash problem has
c–r + 2 degrees of freedom. For the analysis of input mul-
tiplicity, they are fixed by specifying c–r transformed mole
fractions Zi of the feed, the pressure P of the reactive flash
separation process and a product composition (XL

i
or XV

i
).

In this study, we assume that the operating conditions of a
nonazeotropic mixture are chosen below the critical state to
avoid retrograde effects. If under these conditions the system
shows multiple solutions (i.e., input multiplicity), more than
one solution may exist for the reactive flash problem. It is
important to note that our analysis also rests on the fact that
the solution (i.e., phase equilibrium compositions) obtained
for reactive flash separation problem is globally stable with
respect to the formation of additional phases (Michelsen,
1982).

In particular, Tiscareño et al. (1998) and Monroy-Loperena
(2001) have suggested that if input multiplicities exist in non-
reactive mixtures, the corresponding flash equation for liquid
or vapor mole fraction of component i must be a concave or
convex function with respect to temperature or vapor phase
fraction. Intuitively, we can expect the same performance for
Eq. (3) or (4) in reactive systems using X. Therefore, analyz-
ing the reactive flash problem of a nonazeotropic mixture in
the temperature domain between the bubble-point tempera-
ture Tbub and the dew-point temperature Tdew, which implies
a real vapor–liquid equilibrium solution, and assuming that a
maximum or a minimum exists for X

j

i
− T, the condition for a

stationary point is given by

dX
j

i

dT
= 0 (13)

or, equivalently, for X
j

i
− �̂V we have

dX
j

i

d�̂V
= 0 (14)

where j is the liquid (L) or vapor phase (V), respectively. Note
that the input multiplicity analysis can be performed in the
vapor fraction domain or in the temperature domain because
there is only one stable solution in flash calculations per-
formed at operating conditions below the critical state of the
mixture (Lucia, 1986; Monroy-Loperena, 2001).

However, based on the fact that the transformed compo-
sition variables are used only to simplify and facilitate the
modeling of thermodynamic behavior of multicomponent and
multireactive systems, the multiplicity analysis must be per-
formed in the domain of mole fraction composition, which is
the real operation variable. As stated, transformed composi-
tion variables (X) depend on both the molar composition (x) of
the reactive system and T at the equilibrium conditions, if P is
given. Therefore, we can state the mathematical functionality:
X = f(x) and x = f(T) or x = f (�̂V ). Then, for reactive phase equi-
librium, Eqs. (13) and (14) are the composition of two functions
and can be written using Leibniz notation as follows

j j j

dX

i

dT
= dX

i

dx
j

k

· dx
k

dT
i = 1, . . . , c − r; j = L, V; k = 1, . . . , c (15)
or using the vapor phase fraction:

dX
j

i

d�̂V
= dX

j

i

dx
j

k

· dx
j

k

d�̂V
i = 1, . . . , c − r; j = L, V; k = 1, . . . , c (16)

where x
j

k
is the mole fraction of component k in phase j at the

equilibrium condition.
Rearranging these functions, we can define the stationary

conditions for identifying input multiplicity in reactive flash
separation using reaction-invariant composition variables

dx
j

k

d�
= dX

j

i

d�
· dx

j

k

dX
j

i

= 0 (17)

where � = T or �̂V depending on the variable to be analyzed.
Note that if Eq. (17) is to be satisfied, then we can have the
following scenarios for finding a stationary point (i.e., a max-
imum or a minimum exists for x

j

k
− �):

Condition I :
dx

j

k

d�
= 0 if

dX
j

i

d�
= 0 and

dx
j

k

dX
j

i

/= 0

Condition II :
dx

j

k

d�
= 0 if

dX
j

i

d�
/= 0 and

dx
j

k

dX
j

i

= 0

Condition III :
dx

j

k

d�
= 0 if

dX
j

i

d�
= 0 and

dx
j

k

dX
j

i

= 0

These conditions indicate that the derivative of X
j

i
with respect

to � equals zero or the derivative of x
j

k
with respect to X

j

i
equals

zero, in an independent way or simultaneously. If the station-
ary point of Eq. (17) is bounded by T ∈ [Tbub, Tdew] and �V ∈ [0,1],
away from the retrograde region, we can confirm the presence
of input multiplicities for the mole fraction of component i
in phase j in a reactive flash separation. In particular, in the
following section we provide numerical evidence to validate
and support that Conditions II and III derived from Eq. (17)
are necessary and sufficient conditions for detecting multiple
solutions in reactive flash separations.

In summary, Eq. (17) is useful to predict the presence of
multiple solutions in reactive flash separation and to eas-
ily recognize what component or set of components exhibits
the multiplicity at the specified operating conditions. It is
important to recall that the application of reaction-invariant
composition variables allows the easy implementation of
numerical strategies for modeling thermodynamic proper-
ties of reactive systems and they are used in this study to
develop alternative conditions for predicting input multiplic-
ity in the reactive flash separation problem. To explore the
presence of input multiplicity in all the system, Eq. (17) must
be tested for all components x

j

k
for k = 1, . . ., c in both vapor

and liquid phases. However, this procedure is not time con-
suming because this criterion can be effectively tested at both
the bubble and dew points where a change of sign in the
derivatives will indicate the presence of a stationary point.
Recall that these derivatives can be evaluated explicitly by
considering

dX
j
∣∣∣ dX

j
∣∣∣ dx

j
∣∣∣
i

dT
∣∣
T=Tsat

= i

dx
j

k

∣∣
x=f (Tsat )

· k

dT
∣∣
T=Tsat

(18)
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Fig. 3 – Flowchart of the proposed method for predicting input multiplicity in reactive flash separation.
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here Tsat is the bubble-point temperature Tbub or the dew-
oint temperature Tdew. So, if the derivate dx

j

k
/d�|T presents a

hange of signs at bubble and dew points, we can conclude the
xistence of multiple solutions for the reactive flash problem.
his condition is equivalent to that reported by Tiscareño et al.

1998) and Monroy-Loperena (2001) for the non-reactive flash
roblem. It is convenient to remark that in the general case
ithout any simplification of the model used for calculation
f the thermodynamic properties; these derivatives are eval-
ated straightforward using finite differences. Alternatively, a
ne-dimensional direct optimization strategy can be used to
nd the minimum (i.e., stationary point for multiplicity anal-
sis) of d2 where d is given by dx

j

k
/d�. If the minimum of d2 = 0,

e conclude that the reactive system shows multiple solu-
ions in flash separation for the component and phase under
nalysis. Note that this optimization approach has also been
sed for input multiplicity analysis in non-reactive systems

Monroy-Loperena, 2001). Our numerical experience indicates
hat an optimization approach is more effective than root-
nding methods for the location of the stationary point of
hese derivatives. In general, our approach is straightforward,

asy to be implemented and does not require complex numer-
cal calculations. With illustrative purposes, Fig. 3 shows the

Table 1 – Examples selected for input multiplicity analysis in a

No. System

1 A1 + A2 ↔ A3, and A4 as an inert
component
(1) Isobutene
(2) Methanol
(3) Methyl-tert-butyl ether
(4) n-Butane

2 A1 + A2 + 2A3 ↔ 2A4

(1) 2-Methyl-1-butene
(2) 2-Methyl-2-butene
(3) Methanol
(4) Tert-amyl methyl ether

3 A1 + A2 + 2A3 ↔ 2A4 with A5 as inert
component
(1) 2-Methyl-1-butene
(2) 2-Methyl-2-butene
(3) Methanol
(4) Tert-amyl methyl ether
(5) n-pentane
steps of our method for predicting input multiplicity. In the fol-
lowing section, we illustrate the application of this approach
for predicting input multiple states in reactive flash separation
problems using well-known reactive systems.

3. Results and discussion

We use two reactive systems as cases of study to illustrate the
application of our approach for predicting input multiplicity
in reactive flash separation. These systems are well-known
in the literature for the production of fuel ethers (Mohl
et al., 1999) and include the synthesis of methyl tert-butyl
ether (MTBE) and tert-amyl methyl ether (TAME). Details of
reactive systems are reported in Table 1 and all model param-
eters are reported by Maier et al. (2000), Bonilla-Petriciolet
et al. (2008a,b) and Carrera-Rodriguez et al. (2011a,b). We
assume that all reactions are reversible and in thermody-
namic equilibrium. Phase equilibrium calculations, including
the determination of bubble and dew points, have been
performed according to the numerical strategies reported
by Bonilla-Petriciolet et al. (2006a,b) and Bonilla-Petriciolet

et al. (2008a,b). Phase stability of all reactive phase equilib-
rium calculations, including bubble and dew points, has been

reactive flash separation.

Thermodynamic models

Wilson model and ideal gas:
�Go

rxs/R =
−4205.05 + 10.0982T − 0.2667T ln T

lnKeq,1 = −�G0
rxs

RT

where T is in K

Wilson model and ideal gas:
Keq,1 = 1.057 · 10−04e4273.5/T

where T is in K

Wilson model and ideal gas:
Keq,1 = 1.057 · 10−04e4273.5/T

where T is in K
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Fig. 4 – Vapor phase composition behavior of (a) isobutene
and (b) butane as a function of temperature and
vaporization fraction for MTBE production.

as a consequence, Eq. (17) is satisfied for these components
where this derivative has changes of sign when T = Tbub and
performed by minimizing the tangent plane distance function
for reactive mixtures (Bonilla-Petriciolet et al., 2006a,b). In this
study, all calculated reactive phase equilibrium compositions
are stable. In summary, the conditions used in this study meet
the requirement for a unique stable solution for the reactive
phase equilibrium calculations. Finally, in this study bisection
method is used to reliably perform the composition transfor-
mation X → x during reactive flash calculations.
Fig. 5 – Input multiplicity (IM) analysis of the vapor phase f
3.1. Reactive system for MTBE synthesis

We have analyzed the presence of input multiplicity in the
reactive system involved in the synthesis of MTBE (x3) from
Isobutene (x1), Methanol (x2) and with n-butane (x4) as inert:

Isobutene (x1) + Methanol (x2) ⇔ MTBE (x3) (19)

Wilson and Antoine models were used for the calcula-
tion of thermodynamic properties employing the parameters
reported by Maier et al. (2000). This reactive system is a
benchmark problem used in reactive process design and
has been studied extensively by Ung and Doherty (1995a),
Bonilla-Petriciolet et al. (2006a,b), Ruiz et al. (2006), and
Carrera-Rodriguez et al. (2011a,b), among other authors. In
particular, Ruiz et al. (2006) showed the presence of Hopf
bifurcations and multiple solutions in the isothermal reactive
flash processes involving MTBE mixture. In our study, MTBE
is selected as the reference component (x3) and transformed
mole fractions for this mixture are given by

X1 = x1 + x3

1 + x3
(20)

X2 = x2 + x3

1 + x3
(21)

X4 = x4

1 + x3
= 1 − X1 − X2 (22)

Multiplicity analysis has been performed for a feed com-
position n0 = (0.163, 0.005, 0.081, 0.751), or in transformed
variables Z = (0.2257, 0.0796, 0.6947), using different conditions
of pressure (P). Note that Ruiz et al. (2006) have analyzed
the same feed for obtaining the Hopf bifurcation diagrams.
The multiple solutions of reactive flash problem are found
by solving Eqs. (3)–(9) for this feed composition and different
operating conditions (i.e., T and P). Fig. 4 shows the results
of reactive flash calculations for xV

1 and xV
4 with respect to

the vaporization fraction and the temperature at different
pressures from 1 to 20 atm. Phase equilibrium behavior of
isobutene (x1) and butane (x4) indicates the presence of mul-
tiplicity in the vapor phase at some operating conditions and,
or the MTBE production in a flash separation at 5 atm.
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Fig. 6 – Input multiplicity (IM) analysis of the vapor pha

= Tdew. Note that we can easily establish that both com-
onents have multiple solutions in the vapor phase but at
ifferent conditions of P (see Fig. 4). As example, Figs. 5 and 6
how the multiplicity analysis for the vapor phase at 5 and
0 atm. In particular, these figures show the dependence of

k with T and the evaluation of the derivatives dXi/dT, dxk/dXi

nd dxk/dT for all components of this reactive mixture. It is
bserved that the reactive flash problem shows multiple solu-
ions for the vapor mole fraction of n-butane at 5 atm, while

sobutene shows multiplicity at 20 atm. As stated, the mole

Fig. 7 – Xi versus T and xk versus Xi for the vapor phase of M
r the MTBE production in a flash separation at 20 atm.

fractions of these components are concave or convex func-
tions with respect to T when multiple solutions are present
for reactive flash separation. It is interesting to note that Eq.
(17) is satisfied if only if: dXi/dT /= 0 and dxk/dXi = 0 or dXi/dT = 0
and dXi/dxk = 0 (i.e., Conditions II and III given below). Similar
results have been obtained for the remaining operating con-
ditions where input multiplicity occurs. In fact, if dXi/dT = 0
and dXi/dxk /= 0, this condition indicates that xk does not
have multiplicity of solutions in tested phase. These results

are illustrated in Figs. 7 and 8 for this reactive system at

TBE production in a reactive flash separation at 5 atm.
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Fig. 8 – xk versus Xi for the vapor phase of MTBE production in a reactive flash separation at 5 atm.
5 atm, where the dependence of Xi with T and the depen-
dence of xk with Xi are shown. For example, the derivatives
of the isobutene (x1) are dx1/dXi /= 0 (for i = 1, 2 and 4), while
dX1/dT = 0, dX2/dT /= 0 and dX4/dT = 0; therefore, based on pre-
vious analysis, we can conclude that this component does not
show multiple solutions in the vapor phase at tested condi-
tions. Similar analysis has been performed for determining
the presence of multiple states in the remaining components
of this mixture.

In this context, it is convenient to recall that Tiscareño et al.
(1998) proposed a set of conditions to predict input multiplic-
ity in non-reactive flash systems. These conditions are based
in the values of phase equilibrium constants Ki. In particu-
lar, these authors have suggested that the vapor mole fraction
of component i can show a stationary point only if Ki > 1,
which is considered a necessary but not sufficient condition
for the presence of multiple solutions in non-reactive flash
separation. By analyzing the values of Ki for both isobutene
and n-butane, our results indicate that this condition is sat-
isfied for all operating conditions where the multiplicity is
present. With illustrative purposes, Fig. 9 shows the temper-
ature dependence of Ki in the range of Tbub and Tdew for this
reactive system at 5 and 20 atm. Both K1 and K4 are higher
than 1 within the tested temperature interval. On the other
hand, the less volatile component cannot have multiplicity
in the vapor phase (Tiscareño et al., 1998). In this reactive

system, MTBE is the less volatile component and also meets
this condition. In general, this agreement may suggest that
the necessary K-based conditions for multiple solutions pro-
posed for non-reactive systems could be useful to explain the
presence of input multiplicities in a reactive flash separation.

3.2. Reactive system for TAME synthesis with and
without inert

TAME is commonly produced by liquid-phase etherification
between methanol and iso-amylenes, in the presence of an
acidic catalyst. Among the three iso-amylenes, only 2-methyl-
1-butene (2M1B) and 2-methyl-2-butene (2M2B) are reactive,
whereas 3-methyl-1-butene (3M1B) is non-reactive. In this
study, we have considered the lumped single reaction with
and without n-pentane (x5) as inert, which can be written as:

2M1B(x1) + 2M2B(x2) + 2 Methanol (x3) ⇔ 2 TAME (x4) (23)

Wilson and ideal gas models have been also used to calculate
thermodynamic properties of this mixture. Model parame-
ters are taken from Chen et al. (2002) and Bonilla-Petriciolet
et al. (2008a,b). This reactive system has been also ana-
lyzed by Ruiz et al. (2006) using Hopf bifurcations and shows
multiple solutions for the isothermal reactive flash process.
Reaction-invariant mole fractions, considering TAME as refer-
ence component (x4) and without inert, are defined as
X1 = x1 + 0.5x4

1 + x4
(24)
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Fig. 9 – Temperature dependence of Ki for the MTBE
production in a reactive flash separation at (a) 5 and (b)
2

X

X

a
a

Fig. 10 – Liquid phase composition behavior of TAME as a
function of temperature and vaporization fraction for TAME

F
2

0 atm.

2 = x2 + 0.5x4

1 + x4
(25)

3 = x3 + x4

1 + x4
= 1 − X1 − X2 (26)

For this reactive system without inert, we have selected

feed transformed composition: Z = (0.1382, 0.3646, 0.4972)

nd multiplicity analysis has been performed at different

ig. 11 – Input multiplicity (IM) analysis of the liquid phase for th
atm.
production without inert.

pressures. Fig. 10 shows the response surfaces of vapor–liquid
equilibrium for that component with multiple solutions,
which corresponds to TAME (x4). In particular, we have ana-
lyzed the reactive flash separation of this system at 2 atm.
At these operating conditions, derivatives for this component
present change of sign only in the liquid phase. None of all
components presents a change of the derivative signs between
the bubble and dew points in the vapor phase and, as a con-
sequence, the multiplicity does not occur in this phase. The
multiplicity analysis for the liquid phase is given in Fig. 11
where the derivatives of all components are reported. Again,
the Conditions II and III are satisfied if multiple solutions are
present for the reactive flash separation (see Figs. 12 and 13).
In this reactive, the liquid mole fraction of TAME satisfies the
necessary and sufficient conditions for detecting the presence
of input multiplicity in the flash separation. Note that the eval-
uation of Eq. (17) is an easy and straightforward approach for
predicting the presence of multiple solutions in a reactive flash
separation.

Fig. 14 shows the temperature dependence of Ki for each
component that participates in this reactive system at 2 atm.

As stated, TAME showed input multiplicity in liquid phase and
its Ki < 1 for the interval Tbub ≤ T ≤ Tdew where the multiplicity is

e TAME production without inert in a flash separation at
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Fig. 12 – Xi versus T and xk versus Xi for the liquid phase of TAME production without inert in a reactive flash separation at
2 atm.

Fig. 13 – xk versus Xi for the liquid phase of TAME production without inert in a reactive flash separation at 2 atm.
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Fig. 14 – Temperature dependence of Ki for the TAME
production in a reactive flash separation at 2 atm (a)
without and (b) with the presence of an inert.

p
p
l
c
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e
(2) The mole fraction of component k in phase j shows a

stationary point with respect to � in a reactive flash

F
f

resent. These results also agree with the necessary condition
roposed by Tiscareño et al. (1998) for input multiplicity in the

iquid phase, which indicates that the liquid mole fraction of a
omponent in a flash separation can show multiplicity if Ki < 1.
his condition also implies that the more volatile component
annot present input multiplicity in the liquid phase. In this
eactive system, 2M1B is the lightest component and does not
how multiple solutions in liquid phase.

Finally, we have studied this reactive system but consid-
ring the presence of n-pentane (x5) as inert using the same
ig. 15 – (a) Vapor and (b) Liquid phase composition behavior of
raction for TAME production with n-pentane as inert.
thermodynamic models. Transformed mole fractions of this
quinary system are given by Eqs. (24)–(26) and

X5 = x5

1 + x4
= 1 − X1 − X2 − X3 (27)

We have analyzed a feed composition Z = (0.0907, 0.1512, 0.190,
0.5681) and results of reactive flash calculations from 1 to
4 atm are reported in Fig. 15. In particular, our results indi-
cate that methanol (x3) shows input multiplicity in both the
liquid and the vapor phases at 2 atm, see Figs. 16 and 17. As
expected, there are convex functions (i.e., x3 versus T) for the
composition of this component in both phases. Therefore, its
derivatives show a change of slope sign at bubble and dew
points and satisfy Eq. (17) if Conditions II and III are met, indi-
cating the presence of multiple solutions in a reactive flash
separation problem (see Fig. 16). Particularly, this component
shows K3 > 1 in all operating conditions where the multiplic-
ity is present. For example, we report the Ki values for this
reactive system at 2 atm in Fig. 14b. Note that both the light-
est and the heaviest components (i.e., 2M1B and TAME) do
not have input multiplicity for the reactive flash separation in
the liquid phase and in the vapor phase, respectively. In fact,
these components meet the necessary conditions established
by Tiscareño et al. (1998) for input multiplicity in non-reactive
systems. In summary, our results indicate that the necessary
conditions proposed by Tiscareño et al. (1998) to determine the
input multiplicity in non-reactive systems, which are based in
the analysis of the equilibrium constants values (Ki), may be
applicable for studying multiple solutions in reactive systems.
However, it is convenient to remark that the interaction of
simultaneous chemical and physical equilibrium may cause
a complex phase behavior in systems subject to chemical
reactions. Therefore, we could expect that, for some reactive
mixtures with complex phase behavior, the based-Ki condi-
tions may not apply.

Finally, based on our numerical calculations and analysis,
we conclude that the necessary conditions for a stationary
point of xk (i.e., multiple solutions) to occur in the feasible
domain of � in a reactive flash separation are:

(1) The mole fraction of component k in phase j shows a
stationary point with respect to � in a reactive flash separa-
tion if dX

j

i
/d� /= 0 and dx

j

k
/dX

j

i
= 0 for at least one X

j

i
where

i = 1,. . .,c − r.
TAME as a function of temperature and vaporization
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Fig. 16 – Input multiplicity (IM) analysis of the liquid phase for the TAME production with inert in a flash separation at 2 atm.

Fig. 17 – Input multiplicity (IM) analysis of the vapor phase for the TAME production with inert in a flash separation at 2 atm.



chemical engineering research and design 9 0 ( 2 0 1 2 ) 1856–1870 1869

d

t
p
c

m
r
i
t
f
i
a
p
s
p
l
m
c
m
r
v
t
h
c
(
s
fl
i
t

4

T
i
c
c
a
r
s
b
o
t
i
o
o
m
i
e
r
r
a
n
t
a
c
F
i
s

separation if dX
j

i
/d� = 0 and dx

j

k
/dX

j

i
= 0 for at least one

X
j

i
where i = 1,. . .,c − r.

Our numerical experience indicates that if the derivatives
X

j

i
/d� = 0 and dx

j

k
/dX

j

i
/= 0, this result is a reliable indica-

or of the absence of multiple solutions of component k in
hase j for a reactive flash separation at tested operating
onditions.

Finally, it is important to remark that any thermodynamic
odel and reactive system, assuming that all reactions are

eversible and in thermodynamic equilibrium, can be used
n our approach because these parameters do not affect
he structure and assumptions of the proposed algorithm
or predicting input multiplicity. In general, our strategy
s based on straightforward phase equilibrium calculations
nd the evaluation of simple mathematical conditions for
redicting the presence of multiple states in reactive flash
eparation and, as a consequence, it appears to be com-
etitive with respect to other methods reported in the

iterature. As stated, several methods for predicting input
ultiplicities mainly relies on the application of homotopy

ontinuation methods due to their capabilities for finding
ultiple solutions. In general, these methods imply the

esolution of non-linear equation systems using an initial
alue problem to define the solution’s path. Even though
hese numerical methods are generally robust, some authors
ave recognized that the homotopy methods may be time-
onsuming and require considerable computational effort
Malinen and Tanskanen, 2010). Based on this fact, we con-
ider that our approach is an alternative strategy, relatively
exible an easy to use, for predicting input multiplicity

n flash separation of systems subject to chemical reac-
ions.

. Conclusions

his study introduces a new approach and conditions to
dentify input multiplicities in reactive flash separation pro-
ess, which are based on the application of reaction-invariant
omposition variables. This approach has been tested and
pplied for predicting and analyzing input multiplicity in two
eactive systems of industrial relevance. Numerical results
upport and validate the proposed conditions and they can
e regarded as necessary conditions to predict the presence
r absence of input multiplicity in reactive flash separa-
ion. Our calculations indicate that the proposed approach
s easy to use and effective for determining the presence
f multiple solutions in reactive flash calculations. In fact,
ur strategy can be applied with any reactive system and
odel for determining thermodynamic properties, assum-

ng that all reactions are reversible and in thermodynamic
quilibrium and the operating conditions are away from the
etrograde region. In fact, our method seems suitable and
obust to perform the multiplicity analysis of multi-reactive
nd multi-component systems. Finally, it appears that the
ecessary conditions proposed to determine the input mul-
iplicity in non-reactive systems, which are based in the
nalysis of the equilibrium constants values (Ki), may be appli-
able for studying multiple solutions in reactive systems.
urther work will be focused on the study of multiple solutions

n reactive flash separations for kinetically controlled reactive
ystems.
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